If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-10-5a^2=-330
We move all terms to the left:
-10-5a^2-(-330)=0
We add all the numbers together, and all the variables
-5a^2+320=0
a = -5; b = 0; c = +320;
Δ = b2-4ac
Δ = 02-4·(-5)·320
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-80}{2*-5}=\frac{-80}{-10} =+8 $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+80}{2*-5}=\frac{80}{-10} =-8 $
| -(x-3)=-2x+6 | | 39c-2)=2(c-6) | | 7d-6d=16 | | 14h-13h=12 | | 4(a-4)=40 | | (180-x)=(90-x) | | 3w + 82=25 | | X=20+-1x | | -9x+13x-61=59 | | p+(-18)=14 | | 4x+26=72 | | (2x-13)+(2x-7)+x=180 | | 125-x=180 | | (4a-8)=(5a+3) | | 3x+7=13x+17 | | y^2+68y+32=0 | | -t=9(t-90) | | -x3=2x+19 | | 3(2x+10)=96 | | 40^3+14x^2-12x=0 | | 3x=11=4x-33 | | 5a-8a=9 | | 30n+80=20 | | 5x+7=14+3x | | 16y^2=100 | | 4b+5=1=1+5b | | V(x)=π(15x2+180x+540) | | -3(2x-3)=-6x-4-5 | | -15-5=3m+41 | | (x/3)=(11/8) | | 16=3x+x-4 | | 5(x+4)=2x-30+2x |